湮灭算符与产生算符

湮灭算符:$\hat{a}=(\frac{m\omega}{2\hbar})^{\frac{1}{2}}(\hat{x}+\frac{i}{m\omega}\hat{p})$

产生算符:$\hat{a}^\dagger=(\frac{m\omega}{2\hbar})^{\frac{1}{2}}(\hat{x}-\frac{i}{m\omega}\hat{p})$

证明对易关系:$[\hat{a},\hat{a}^\dagger]=1$

$$\begin{aligned}[\hat{a},\hat{a}^\dagger]&=[(\frac{m\omega}{2\hbar})^{\frac{1}{2}}(\hat{x}+\frac{i}{m\omega}\hat{p}),(\frac{m\omega}{2\hbar})^{\frac{1}{2}}(\hat{x}-\frac{i}{m\omega}\hat{p})] \\ &=\frac{m\hbar}{2\hbar}[\hat{x}+\frac{i}{m\omega}\hat{p},\hat{x}-\frac{i}{m\omega}\hat{p}] \\ &=\frac{m\hbar}{2\hbar}\{[\hat{x},\hat{x}]-[\hat{x},\frac{i}{m\omega}\hat{p}]+[\frac{i}{m\omega}\hat{p},\hat{x}]-[\frac{i}{m\omega}\hat{p},\frac{i}{m\omega}\hat{p}]\} \\ &=\frac{m\hbar}{2\hbar}\{-\frac{i}{m\omega}[\hat{x},\hat{p}]+\frac{i}{m\omega}[\hat{p},\hat{x}]\} \\ &=\frac{m\hbar}{2\hbar}\cdot \frac{2\hbar}{m\omega} \\ &=1\end{aligned}$$

对于一维线性谐振子:

$$\xi =\sqrt{\frac{m\omega}{\hbar}}x=\alpha x$$

从而得出:

$$\hat{a}=\frac{1}{\sqrt{2}}(\xi+\frac{\partial}{\partial \xi})$$

$$\hat{a}^\dagger=\frac{1}{\sqrt{2}}(\xi-\frac{\partial}{\partial \xi})$$

将$\hat{a}$作用于谐振子哈密顿算符的第$n$个本征态$\psi_{n}$,可以得到:

$$\hat{a}\psi_{n}=\frac{1}{\sqrt{2}}(\xi+\frac{\partial}{\partial \xi})\psi_n$$

再根据:

$$\xi \psi_n=\sqrt{\frac{n}{2}}\psi_{n-1}+\sqrt{\frac{n+1}{2}}\psi_{n+1}$$

$$\frac{d}{d\xi}\psi_{n}=\sqrt{\frac{n}{2}}\psi_{n-1}-\sqrt{\frac{n+1}{2}}\psi_{n+1}$$

最终得到:

$$\begin{aligned}\hat{a}\psi_n &=\frac{1}{\sqrt{2}}\xi \psi_n +\frac{1}{\sqrt{2}}\frac{\partial}{\partial \xi}\psi_n \\ &=\frac{1}{\sqrt{2}}(\sqrt{\frac{n}{2}}\psi_{n-1}+\sqrt{\frac{n+1}{2}}\psi_{n+1}+\sqrt{\frac{n}{2}}\psi_{n-1}-\sqrt{\frac{n+1}{2}}\psi_{n+1}) \\ &=\frac{1}{\sqrt{2}}\cdot2\cdot\sqrt{\frac{n}{2}}\psi_{n-1} \\ &=\sqrt{n}\psi_{n-1}\end{aligned}$$

同理:

$$\hat{a}^\dagger \psi_n=\sqrt{n+1}\psi_{n+1}$$

pdf版本下载

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
下一篇